Near Field Communication in the real world – part III

Moving to System on Chip (SoC) integration
Contents

1. **Introduction** ... 3
2. **Integration – it’s only natural** .. 4
3. **How and when should NFC SoC be implemented?** 5
 3.1 The NFC integration story ... 5
 3.2 The SoC opportunity .. 5
 3.3 Design and implementation issues 6
 3.4 Custom design advantages ... 7
4. **Summary** .. 8
5. **Glossary** .. 9
1 Introduction

The success of Near Field Communication (NFC) across a broad range of applications depends on its large-scale adoption by enterprises and consumers. This implies the need for simple, low-cost implementation of the technology in a wide variety of devices, from mobile phones and laptops to point-of-sale terminals and ticket machines.

One way NFC technology can be integrated cost-effectively in mass-market electronic devices is through System on Chip (SoC) implementation in other common, for example wireless communications, chipsets, such as those for Bluetooth, WiFi and UWB. In high-volume products, SoC implementation of NFC offers significant unit-cost savings and very efficient integration, with lower overall space, processing and power requirements – while adding great value.

This paper outlines the business case for NFC integration and highlights the key considerations that need to be taken into account when implementing a custom NFC design.
Integration – it’s only natural

Integration is an established ‘fact of life’ in the consumer electronics product lifecycle. Usually, the first products to market are built from discrete components, and their typically high sale price reflects the high production costs and small production volumes. As a product becomes more popular and successful, manufacturers can begin to invest in progressively greater integration of components to drive down manufacturing costs as volumes increase.

The trend towards integration can be seen at a macro level too. For example, car audio equipment was almost always an after-market purchase, with separate components coming in standard sizes, with standard interfaces, they could be ‘mixed and matched’. Now it would be rare for a new car to be sold without an in-car entertainment system that integrates one or more media formats, radio tuner and speakers.

In the case of consumer electronic devices, integration of a new technologies follows a well-trodden path. When a new technology comes along, the first products might be external devices that can be connected via a cable to, say, a PC, digital camera or mobile phone. Next there are card accessories that can be plugged into the PC or phone. Then comes a chipset that sits on the main PCB. And finally there could be even closer integration of the technology with other functionality on the main PCB, where this makes technical and economic sense.

Technologies undergo a similar process of integration within the devices themselves, of course. A prime example is the development of the GSM mobile phone from single-band (900MHz) only operation, through multi-band GSM (900MHz, 1800MHz, 1900MHz) operation to multi-mode (GSM/WCDMA) operation. As these new capabilities were introduced, multi-band and multi-mode blocks were typically added for the digital logic and signal processing parts. Initially, however, the different RF parts were implemented as separate blocks, as digital logic and RF technology were developing at different rates, and market demand for the different combinations of RF bands was not well established. Today, RF design and market acceptance have moved on to the point where the RF part is common for all frequencies, and even the previously separate antennas for the different bands have become integrated into one planar design.

In other words, over time, it has become possible and desirable to move commonality further down the mobile phone functionality stack.

The key issue facing some electronic product designers and manufacturers today is where, and how closely, NFC should be integrated into their products.
3 How and when should NFC SoC be implemented?

When to integrate NFC with other technologies, and which interfaces to provide to the host system, are key considerations, integrating too early, before the standards are fixed, could require further engineering changes in the future, adding delay. Integrate too late and you could be left behind in the race to meet volume demand from a mass market cost-effectively.

The choice of interface point is a key market success factor, especially when different technologies are developing at different speeds. If integration is performed with interfaces at the wrong point – with stable technologies integrated with less mature ones – adding or developing capabilities on the ‘integrated’ side of the divide could become much more costly than if they had been left on the other side of the interface.

The integration point shifts with time and changing market conditions. The trick is to know when to move to the next level of integration.

3.1 The NFC integration story

As with other technologies, NFC is going through a classic integration process. The first prototype implementations of NFC in mobile phones were as cover units that clipped on to the back of the phone – analogous to a plug-in line card. While these devices were useful for accessing and testing the market for NFC-enabled mobile phones, they were unlikely to take off as a mass-market consumer product, due to the relatively high unit cost because of the pilot volumes involved.

Now, as NFC moves to the next level of integration, designers have the choice of developing NFC chipsets to sit on electronic device motherboards, or moving to SoC implementations.

The advantage of greater integration is a significant cost benefit in high-volume production, which should more than cover the up-front design and development costs. But before choosing one route over another, designers and engineers should consider what role NFC will play in the device, and whether there are ‘overlap’ areas with other circuitry on the host device’s existing silicon.

3.2 The SoC opportunity

So is there circuitry already available on the typical electronic device motherboard for NFC to ‘piggy-back’ on to? Like any RF-based technology today, NFC requires a certain amount of analogue circuitry for transmitting and receiving analogue radio waves. Around 99 per cent of silicon today is purely digital (mostly memory), and there is little scope for building extra processes on this. But luckily, there are several areas of combined digital/analogue circuitry in devices like mobile phones, PDAs, digital cameras and payment terminals, which provide ideal hosts for NFC processes. Chief among these are wireless communication chipsets, such as for example; Bluetooth, WiFi and UWB; and there are several other candidates.
Using such hosts for SoC implementations of NFC makes a lot of sense financially. The additional cost of including a stand-alone NFC chipset on the typical electronic device motherboard can be US$5+ per unit, and requires 25–30 connector pins. Implementing the same NFC functionality as a custom IP block on a Bluetooth chipset typically adds under US$1.00 per unit, requires only 6–8 connector pins (including test pins) and, obviously, needs no separate chip. The NFC IP block can be placed in the corner of the Bluetooth chipset using on-chip connections.

The financial attractions of SoC are clear when addressing a mass market. Of course, there are up-front costs for developing custom IP for SoC implementations, but these will quickly be repaid through bill of materials and production savings in high volumes. When one considers that there are 300 million Bluetooth chipsets sold annually, the time taken to recoup even a US$1 million development investment is minimal. The manufacturer can also, as a result of this SoC integration, charge a premium on their host chipset for built-in NFC capability.

The reduction in pin connectors is also significant. In electronic devices like mobile phones, digital cameras and payment terminals, motherboard ‘real estate’ is very limited and expensive.

Integrating NFC with Bluetooth, WiFi or UWB chipsets also makes a lot of sense from a technical perspective. Many of the processes and components needed by these RF-based technologies are the same: antenna, power, clock, data bus, to name a few. Having the NFC IP block on-chip also avoids the need for it to have its own ESD protection and drivers to ensure it works over the distances involved.

As with its host chipset, NFC can be implemented as a ‘clever peripheral’ with its own microprocessor, so that it does not need to wake up the main processor each time there is NFC activity – only when ‘real’ data is passed does the host processor get involved. What’s more it means the NFC element avoids becoming part of the main device development programme.

3.3 Design and implementation issues

The choice between a custom IP block for SoC and a custom chip implementation is determined by the emphasis of the project – whether it is on memory, size, and power requirement, for example if additional functionality is required for an existing SoC.

For example, to add NFC capability to a Bluetooth SoC, the challenges stem from the fact that different semiconductor vendors use different SoC design practices and procedures. Some emphasize memory optimization; others focus on size, layout or power consumption. Providing an NFC IP block that is optimized for use across these different environments requires extensive experience of the industry tools, each vendor’s procedures, an in-depth understanding of the customer requirements and design-flow.

Another key point is that the process geometry used for the NFC implementation must be the same as that of the semiconductor vendor’s SoC. This demands a robust NFC architecture and design that can be successfully migrated to different geometries – and producing this takes a lot of detailed design knowledge and experience.
A typical design-flow starts with the specification, and then moves on to architecture design, comprising both analogue and digital elements and the relevant interfaces. Successfully combining all of these elements into a customized solution requires highly specialized expertise in both analogue and digital design.

Once the NFC IP analogue and digital components of the design have been integrated into the SOC, the NFC elements of the new SOC design can be fed back into the SOC specification to enable productization.

3.4 Custom design advantages

Assuming there is sufficient volume to justify the development costs, custom IC design – whether for stand-alone or SoC implementations – offers the advantage of optimising a design for cost, performance, size and efficiency.

Custom IC design also optimizes the cost of IP ownership and – as it is tailored specifically for purpose – it entails exclusively non-recurrent engineering. This means that for a given application, power usage, silicon area and memory can be optimized to a specific requirement. Using custom IC design for NFC SoC implementations also means the host chipset designers do not need to become experts in a new area, yet can successfully integrate NFC capability into their products with low technical risk.

Inovision Research and Technology plc has already developed a NFC IP coreware solution that can be customised across multiple geometries and processes enabling a fast time-to-market, low technical risk and minimised unit cost for a truly customised NFC design.

Inovision has one of the world’s largest dedicated NFC IC design teams, who have a proven track record in delivering industry-leading design solutions.
4 Summary

As NFC becomes more widely adopted as a mass-market technology, the advantages of SoC implementations become more compelling. Bluetooth chipset manufacturers have already shown that Bluetooth/FM integration provides a successful business model in the mobile phone market. If anything, the business case for Bluetooth/NFC integration is even better, across a broader range of applications – and this model applies equally well to other chipsets.

Designing and implementing NFC SoC circuitry requires detailed knowledge and experience. Mistakes or late changes in the NFC design integrated in a Bluetooth or WiFi chipset could cost hundreds of thousands of dollars to put right.

It therefore makes sense for chipset manufacturers considering System on chip (SoC) implementations of NFC to seek expert help and guidance in the design process. Innovision Research & Technology has developed industry-leading NFC IP to enable fully customised NFC solutions to be realised quickly, cheaply, with minimal additional unit cost and fully optimised for the host IC and end market application.
5 Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluetooth</td>
<td>Short-range (10–100m) wireless communication protocol</td>
</tr>
<tr>
<td>FM</td>
<td>Frequency Modulation Radio</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile communication</td>
</tr>
<tr>
<td>NFC</td>
<td>Near Field Communication</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>SoC</td>
<td>System on Chip</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra Wide Band</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
<tr>
<td>WiFi</td>
<td>Wireless Fidelity – wireless networking technology based on IEEE 802.11 standards</td>
</tr>
</tbody>
</table>